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Moment-of-fluid interface reconstruction

Vadim Dyadechko∗† Mikhail Shashkov†

Draft of January 25, 2006

Abstract

We designed a new mass-conservative interface reconstruction method. Un-
like volume-of-fluid (VoF) methods, which calculate the interface location from
the volumes of the cell fractions occupied by different materials, the new algo-
rithm localizes the interface based on both volumes and centroids of the cell frac-
tions.

The amount of information carried by the volume and centroid is sufficient to
bound the respective cell fraction with a linear interface (i.e. perform Piecewise-
Linear Interface Calculation (PLIC)) even without using the data from the adjacent
cells. The normal of the linear interface can be determined by fitting the cen-
troid of the fraction behind the interface to the given centroid, subject its volume
matches the given one.

This technique reconstructs linear interfaces exactly, yields a second order ac-
curate approximation to the interfaces given by simple C2 curves, has higher
resolution and is shown to be more accurate than VoF-PLIC methods.

1 Introduction
There is a variety of discrete interface models developed for Eulerian simulations
of a multi-phase fluid flow:

• Level sets methods [26, 25, 27, 18] work with implicit representation of the
interface as a zero level set of a discrete signed distance function defined for
each pair of adjacent fluid phases.

∗corresponding author; e-mail: vdyadechko@lanl.gov
†Mathematical Modeling and Analysis Group (T-7) at Los Alamos National Laboratory
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• Front tracking methods [30, 8, 23, 29] use supplementary Lagrangian surface
grid that marks the interface between different phases.

• Interface capturing methods calculate the interface location at each discrete
moment of time from the solution data. Two major groups of interface cap-
turing methods should be mentioned here: volume-of-fluid (VoF) [6, 15, 9,
31, 4] methods, which construct the interface from the volumes of the cell
fractions occupied by different fluid phases, and Lagrangian particle meth-
ods [11, 7], which separate the clouds of the test particles of different origin.

Either approach has its virtues and drawbacks. The resolution of level set
and VoF methods, for example, is limited by the resolution of the grid, while
front tracking and particle methods do not have this limitation. Particle methods
are extremely flexible but very expensive, and therefore are feasible mostly as a
supplement to other major technique. Front tracking, on the other side, is much
cheaper, but only as long as the interface topology is not evolving: the modifi-
cation the surface grid topology is a challenging task. Neither of level set, VoF,
or particle methods experience any problem adopting topological changes of the
interface.

What really distinguishes VoF methods from all other techniques is their abil-
ity to preserves the mass of each fluid component1). For a wide range of appli-
cations the importance of mass conservation on the discrete level outbalances all
potential disadvantages of VoF technology.

A typical simulation cycle of VoF method consists of two step:

• the advection and

• the interface reconstruction.

One may consider the interface reconstruction to be just an auxiliary for the ad-
vection, yielding more accurate calculation of the fluxes. But since the primary
object of our discussion is the interface reconstruction, we prefer to put the recon-
struction algorithm at the center of the picture and leave the advection scheme
to provide it with the input data. Moreover, following the divide-and-conquer
principle, we are going to take the interface reconstruction completely out of the
dynamic VoF context and study it separately. The input date (volume fractions)
in this case come not from the advection scheme but from some static multi-
material1) pattern, and the objective of the algorithm is to approximate the origi-
nal pattern as accurate as possible.

All VoF interface reconstruction algorithms are designed to separate two ma-
terials. Volume fractions of two fluid components sharing a mixed cell are not in-
dependent but complement each other to 1. Essentially only the volume fractions

1) Terms “fluid component” and “material” are used here as synonyms of “phase”.
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LSG LVIRA Swartz MoF = original

Figure 1. Interface approximations obtained with different PLIC algorithms.
MoF method is able to reproduce the original shape exactly.

of a single component, further referred to as a reference one, explicitly participate
in the interface reconstruction.

The most common interface approximation used by VoF methods consists
of a single linear interface per mixed cell (Piecewise-Linear Interface Calcula-
tion (PLIC)). Once the direction of the interface outward (with respect to the
reference component) normal is know, the location of the interface is uniquely
identified by the volume of the reference fraction. There is a number of ways to
define the direction of the normal:

• by estimating the gradient of the discrete volume fraction function [31, 2];

• by finding a common linear interface for the cluster of cells that guarantees
the best approximation to the given volume fractions [20, 19];

• by averaging the normals of the common linear interfaces due to all mixed
neighbours [6, 28].

All techniques based on the volume fraction gradient estimation, like Youngs [31],
Green-Gauss [2], and Least Square Gradient (LSG) [2] algorithms, allow direct
implementation and are first order accurate. To get a second order accurate
approximation on an unstructured grid, one has to use an iterative technique,
like Least square VoF Interface Reconstruction Algorithm (LVIRA) [20, 19] or
(Mosso-)Swartz algorithm [28, 12].

Regardless of the algorithm employed, the evaluation of the interface normal
in a mixed cell requires the volume fraction data from the surrounding cells. As a
result, the discrete interfaces in the adjacent mixed cells are never quite indepen-
dent. This inherent feature of VoF methods prohibits the resulting approximation
to resolve any interface details smaller than a characteristic size of the cell cluster
involved in the evaluation of the normal; the statement is illustrated by Figure 1,
which demonstrates how the quality of LSG, LVIRA, or Swartz interface recon-
struction varies with the scale of details in the original shape.
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In order to overcome this limitation of VoF methods we propose to enrich an
interface reconstruction input data set with the centroids of the cell fractions. The
amount of information carried by the volumes and centroids or, equivalently, by
the first two moments of the cell fractions is sufficient to define a mass-conservative
PLIC approximation even without sharing the data between the cells. The normal
of the interface in each mixed cell is is determined by fitting the centroid of the
cell fraction behind the interface to the reference centroid, subject its volume matches
the reference one. This strategy, called moment-of-fluid (MoF) interface reconstruction,
results in second order accurate approximation for C2-smooth original interfaces;
linear interfaces are reconstructed exactly (Figure 1, MoF).

With no data from adjacent cells participating in the evaluation of the inter-
face, the method is able to resolve interface details as small as the cell itself, i.e.
two to three times smaller than conventional VoF-PLIC methods (see Figure 1).
No data exchange also means that the grid structure is irrelevant for MoF interface
reconstruction.

Compared to alternative approaches, which exploit purely geometrical prin-
ciples, centroid data involvement has a clear mechanical reason. An inexact in-
terface reconstruction introduces some redistribution of the fluid inside a mixed
cell. This fluid motion is unrelated to any physical force presented in a discrete
model. Any displacement ∆x of the cell fraction centroid caused by the interface
reconstruction can be interpreted as an action of an artificial force of magnitude
∼m∆x/∆t2 (here m is the mass of the cell fraction, and ∆t is the time increment).
Therefore by complying with original centroids we explicitly reduce these artifi-
cial forces and improve approximation properties of the discrete model of fluid
dynamics.

The idea to employ the centroid data in VoF contex has been around for a
while. J. Saltzman [21] evaluated the interface normal as the difference between
the center of the mixed cell and the centroid of the reference component enclosed
in the cluster formed by the cell and its direct neighbours; the centroid estimate
obtained from the respective volume fractions yields a first order accurate [19]
interface approximation. S. Mosso and S. Clancy [13] used centroid information
to derive the material order for multi-material interface reconstruction. The same
technique was independently presented by D. Benson [3]. Unfortunately all these
initiatives did not get any further development.

The body of the paper is organized into three sections. Section 2 contains the
statement of the moment-of-fluid interface reconstruction problem for a single
mixed cell, discussion of the solution properties, and the detailed description of
MoF algorithm in 2D. Section 3 compares MoF algorithm against VoF counter-
parts by means of static tests. And Section 4 gives an example of the advection
scheme that can be used with MoF interface reconstruction algorithm for simu-
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lation of the incomplessible fluid flow.

2 Moment-of-fluid interface reconstruction
Let us start with formal definitions. Consider a mixed cell given by an open poly-
gon Ω ⊂ R

2. Each cell fraction occupied by a single component may be repre-
sented by a non-trivial open subset ω ⊂ Ω (ω 6= ∅, ω 6= Ω). The family of all
non-trivial open subsets of Ω we denote as SΩ. As a non-empty open set, ω ∈ SΩ

always has a positive volume (area in 2D)

|ω| ≡

∫

ω

dx, 0 < |ω| < |Ω|

and a well defined centroid

xc(ω) ≡
1

|ω|

∫

ω

x dx, xc(ω) ∈ hull(Ω);

here hull(Ω) is the convex hull of Ω.
In practice it is common to specify the volume of ω ∈ SΩ in terms of volume

fraction:

µ(ω) =
|ω|

|Ω|
, 0 < µ(ω) < 1.

The part of the subset boundary ∂ω different from the cell boundary ∂Ω rep-
resents the interface Γ(ω) between ω and its complement Ω \ ω :

Γ(ω) = ∂ω \ ∂Ω.

Whenever the interface is linear, the subset is called truncation volume or cutout.
Formally, each cutout ωh ∈ S

h
Ω is a non-trivial intersection

ωh ≡ Ω ∩ h

of Ω with an open half-plane h ⊂ R
2; this should also explain the “h” subscript in

cutout notation. The family of all cutouts we denote as S
h
Ω.

2.1 Problem formulation
Suppose Ω contains only two fluid components, and ω∗ ∈ SΩ is the original
fraction occupied by the reference component. Given the first two moments of ω∗
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or, equivalently, the reference volume fraction µ∗ ≡ µ(ω∗) and the reference centroid
x∗ ≡ xc(ω

∗), one is required to find a cutout ω∗
h ∈ S

h
Ω that approximates the

original fraction ω∗.
The first natural step would be to find ω∗

h ∈ S
h
Ω that matches both given ref-

erence moments exactly. Unfortunately such a strategy is not guaranteed to suc-
ceed. The half-plane h that defines a truncation volume is uniquely identified
with 2 independent parameters: the polar angle of the outward unit normal on
∂h and the distance of ∂h from the origin. It means that the search space S

h
Ω is

two-dimensional. The reference data space, formed by reference volume fraction and
2 components of reference centroid, is three-dimensional. As one can see, it is not
always possible to find a cutout that matches given reference moments exactly:
in general, such a problem is overdetermined. More detailed analysis reveals an
important

Property 1. Each truncation volume is uniquely identified by its centroid.

Therefore, once the reference centroid x∗ is matched by xc(ω
∗
h), there is no extra

degree freedom to match the reference volume. Nevertheless if the original ref-
erence fraction ω∗ is a truncation volume itself, the cutout ω∗

h with xc(ω
∗
h) = x∗

has no choice but to match the original cell fraction ω∗ exactly; in this case the
reference volume fraction is matched automatically.

Since the volume (mass) conservation is of highest priority for us, we have to
sacrifice the exact centroid matching in the case when ω∗ 6∈ S

h
Ω. Our strategy is to

find a cutout of the given volume fraction whose centroid provides the best approximation
to the reference one. This leads to a formal optimization problem in the space of
cutouts of the given volume fraction:

S
h,µ∗

Ω ≡ { ωh ∈ S
h
Ω | µ(ωh) = µ∗ }.

Problem 1. Find a cutout ω∗
h ∈ S

h,µ∗

Ω such that

ω∗
h = arg min

ωh∈S
h,µ∗

Ω

||xc(ωh)− x∗||2, (1)

where || · || is the Euclidean norm.

This problem, further referred to as a moment-of-fluid (MoF) interface reconstruc-
tion, makes the object of our study.

2.2 Mathematics of MoF interface reconstruction
Now we would like to give an insight into Problem 1. The reader will find here
no formal proofs, only declarations of important facts along with some illustra-
tions. The material presented in this subsection is not essential for understanding
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the rest of the paper and can be skipped with no harm. Still, we would like the
impatient reader to be aware of the main results reported: MoF interface recon-
struction is unique (with absolute certainty), stable (also with absolute certainty), and
second order accurate (for sufficientlty smooth interfaces).

Let us (re-)introduce the following families of cell fractions:

• all cutouts of the given volume fraction:

S
h,µ∗

Ω = { ωh ∈ S
h
Ω | µ(ωh) = µ∗ };

• all non-trivial open subsets of the given volume fraction:

S
µ∗

Ω = { ω ∈ SΩ | µ(ω) = µ∗ };

and the loci of respective centroids:

X h,µ∗

Ω ≡ xc(S
h,µ∗

Ω ) = { x ∈ R
2 | x = xc(ωh), ωh ∈ S

h,µ∗

Ω },

X µ∗

Ω ≡ xc(S
µ∗

Ω ) = { x ∈ R
2 | x = xc(ωh), ω ∈ S

µ∗

Ω }.

Since each truncation volume is uniquely identified by its centroid (Prop-
erty 1), Problem 1 is equivalent to finding a nearest to x∗ point of locus X h,µ∗

Ω :

Problem 1a. Find a point x∗
h ∈ X

h,µ∗

Ω such that

x∗
h = arg min

xh∈X
h,µ∗

Ω

||xh − x∗||2. (1a)

Although this alternative formulation of MoF interface reconstruction prob-
lem is of little practical use, it provides a simple geometrical model to analyze
the existence, uniqueness, and stability of MoF interface reconstruction.

Since Problem 1a is about approximating x∗ ∈ X µ∗

Ω with elements of X h,µ∗

Ω ,
our attention should be focused on the properties of these two loci:

Property 2. X µ∗

Ω is a strictly convex closed set with a smooth boundary

∂X µ∗

Ω = X h,µ∗

Ω .

This property is illustrated by Figure 2.

Property 3. Among all the elements of S
µ∗

Ω , only cutouts have their centroids located on
the boundary of X µ∗

Ω .

Yet another property, even though it is not referenced directly, completes the
picture of the problem we study:

7
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Ω

X µ∗

Ω

X h,µ∗

Ω

convex cell non-convex cell

Figure 2. Examples of X µ∗

Ω and X h,µ∗

Ω loci (µ∗ = 0.25) for polygonal cells of dif-
ferent shape.

Property 4. Centroid loci given by different values of volume fraction compose a uni-
parametric family

{ X µ∗

Ω | 0 < µ∗ < 1 }

of nested sets:
µ∗

1 < µ∗
2 =⇒ X

µ∗

2
Ω ⊂ X

µ∗

1
Ω ,

⋂

0< µ∗<1
X µ∗

Ω = xc(Ω),

⋃

0< µ∗<1
X µ∗

Ω = hull(Ω).

Figure 3 shows examples of nested centroid loci defined by different values of
the reference volume fraction.

Existence. The search space (X h,µ∗

Ω ) of continuous objective function ||xh − x∗||2

is compact (Property 2), therefore by Weierstrass theorem solution of the mini-
mization problem (1a) always exists.

Uniqueness. Even though reference moments are assumed to be given by
some cell fraction, i.e. x∗ ∈ X µ∗

Ω , one better not count on this fact in a real life cal-
culation: miscellaneous discretization and round-off errors may cause the input
data to be inconsistent.

Properties 2 and 3 allow us to classify all input data (µ∗,x∗) ∈ ] 0, 1 [×R
2 into

three categories (see Figure 4a):
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Ω

convex cell non-convex cell

Figure 3. Illustration of the nested structure of { X µ∗

Ω | 0 < µ∗< 1 } locus family
for polygonal cells of different shape: xc(Ω) ∈ X 0.90

Ω ⊂ X 0.75
Ω ⊂ X 0.50

Ω ⊂

X 0.25
Ω ⊂X 0.10

Ω ⊂X 0.05
Ω ⊂ hull(Ω).

1) x∗ 6∈ X µ∗

Ω : the reference moment data are inconsistent, i.e. there is no cell
fraction that satisfies them. Some consolation is supplied by the fact that
solution of (1) (which is unique because x∗ is located outside the convex re-
gion bounded byX h,µ∗

Ω ≡ ∂X µ∗

Ω ) gives the best approximation to the reference
centroid among all the subsets of the given volume fraction µ∗.

2) x∗ ∈ ∂X µ∗

Ω : the source of the reference data is known to be a truncation
volume (Property 3), which can be uniquely (Property 1) identified by solv-
ing (1).

3) x∗ ∈ X µ∗

Ω \ ∂X µ∗

Ω : the original cell fraction ω∗ is not a cutout. This type of
the input is the most common and also requires more careful analysis.
To start with, Problem 1a in this case may have multiple solutions (Fig-
ure 4b). The number of multiple solutions is always finite and can be as big
as the number of vertices of the polygon given by the convex hull of a cell.

We use symbol X̃ µ∗

Ω to denote the locus of all reference centroids defining mul-
tiple solutions of (1a). X̃ µ∗

Ω is a non-empty connected set composed of a finite
number of smooth segments that form a tree graph pattern (see Figure 4b);
the tips of the tree branches are always open. Since X̃ µ∗

Ω has zero area, one
can consider the input x∗ ∈ X̃ µ∗

Ω to be improbable. Therefore MoF interface

9
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∗
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∗
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∗
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Ω

X h,µ∗

Ω
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Ω

(a)
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Ω

∂X µ
Ω

X̃ µ
Ω

x
∗
1

x
∗
2

x
∗
3

x
∗
4

X µ∗

Ω

X̃ µ∗

Ω

X h,µ∗

Ω

∂X µ∗

Ω

(b)

Figure 4. (a) For a given value of µ∗ the closed curve X h,µ∗

Ω ≡ ∂X µ∗

Ω divides all
possible locations of reference centroid into three groups: strictly out-
sideX h,µ∗

Ω (x∗
1 sample), directly onX h,µ∗

Ω (x∗
2 sample), and strictly inside

X h,µ∗

Ω (x∗
3 sample).

(b) Example of X̃ µ∗

Ω locus of reference centroids that specifies non-
unique solutions of MoF interface reconstruction problem for a square
cell and µ∗= 0.1. One can see here reference centroid samples
x∗

1,x
∗
2,x

∗
3 ∈ X̃

µ∗

Ω , x∗
4 6∈ X̃

µ∗

Ω and respective solutions of Problem 1a
located on X h,µ∗

Ω . With µ∗= 0.1, there are 4 solutions of the prob-
lem for x∗ = x∗

1, 2 solutions for x∗ = x∗
2,3, and only one solution for

x∗ = x∗
4 (open tip of the X̃ µ∗

Ω brunch).

reconstruction is unique with absolute certainty.
There is one special case worth separate consideration. It can be shown
that for each particular shape of a mixed cell Ω, there exists R > 0, such
that for any cell fraction ω∗ ∈ SΩ with the interface curvature uniformly
bounded from above by 1/R, the centroid x∗ = xc(ω

∗) is located beyond
the reach of X̃ µ∗

Ω , µ∗ = µ(ω∗). This fact becomes very important when the
reference data are error free, namely, if the original interface is given by a C2-
smooth curve with its curvature bounded from above by a positive constant, one
can always introduce sufficiently fine shape-regular polygonal mesh to guarantee
that MoF interface reconstruction is unique in each mixed cell.

Stability. MoF interface reconstruction problem depends on a set of input
parameters: reference volume fraction and centroid. The solution of a problem
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for given input parameters is considered to be stable if:

1) it is unique;

2) it stays unique under any sufficiently small perturbation of input parame-
ters;

3) it depends on input parameters continuously.

Each input (µ∗,x∗) of MoF interface reconstruction problem can be classified ei-
ther as unique or multiple, depending on the number of resulting solutions. IfMΩ

is a subset of the input data space IΩ ≡ ]0, 1[×R
2 composed of all multiple inputs:

MΩ = { (µ∗,x∗) ∈ IΩ | x∗ ∈ X̃ µ∗

Ω },

then the complement ofMΩ :

UΩ = IΩ\MΩ = { (µ∗,x∗) ∈ IΩ | x∗ 6∈ X̃ µ∗

Ω }

describes all unique inputs.
Not all unique inputs satisfy the second stability criterion: any input that

corresponds to the tip of an X̃ µ∗

Ω branch (sample x∗
4 on Figure 4b), while being

unique, is a limit point of MΩ, i.e. under an infinitesimally small perturbation
may turn into a multiple input. By excluding from UΩ all limit points ofMΩ we
obtain the largest open subset of UΩ :

SΩ ≡ IΩ\MΩ = { (µ∗,x∗) ∈ IΩ | x∗ 6∈ X̃ µ∗

Ω },

which is composed of all inputs that satisfy the first two stability criteria.
As of the last criterion, it can be proven illustrated by Figure 5a

Property 5. Solution of MoF interface reconstruction problem continuously depends on
reference moments.

Therefore the set SΩ ≡ IΩ \MΩ also describes all stable inputs. Taking into
account the fact ofMΩ being a measure zero set in space IΩ, one can conclude that
solution of MoF interface reconstruction problem is stable with absolute certainty.

Approximation properties. There are many possible ways to quantify the
interface reconstruction error. One, for instance, can measure either

• the first moment defect:

∆M1 ≡ ||M1(ω
∗
h)−M1(ω

∗)|| = |Ω|µ∗||x∗
h − x∗||, (2)

where M1(ω) ≡
∫

ω

x dx is the first moment of a cell fraction ω ∈ SΩ;

11
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Figure 5. (a) Sample reference centroids x∗
1,x

∗
2,x

∗
3,x

∗
4 and respective solutions

diffused by fuzziness of the reference data (of both centroid and vol-
ume fraction) demonstrate continuous dependence of MoF solution on
reference moments.
(b) The parametrization of the search space for numerical optimization
of (1). Each ωh ∈ S

h,µ∗

Ω is uniquely identified by the polar angle φ of
the interface outward normal n. Note that φ also specifies the direction
of the local inward normal on X h,µ∗

Ω at point xh(φ) ≡ xc(ωh(φ)).

• the area of the symmetric difference between ω∗
h and ω∗:

∆ω ≡ |ω∗
h4ω∗| = |(ω∗

h ∪ ω∗) \ (ω∗
h ∩ ω∗)|;

• or the maximum deviation of the original interface Γ(ω∗) from the cut-line
∂h∗ defining Γ(ω∗

h) = Ω ∩ ∂h∗ :

∆Γ ≡ dist(Γ(ω∗), ∂h∗) = max
x∈Γ(ω∗)

min
y∈∂h∗

||x− y||.

Since MoF interface reconstruction is achieved by minimizing ||x∗
h−x∗||, then

according to (2) it should result in the minimal defect of the first moment attainable
with a mass-conservative PLIC approximation. In this sense MoF interface reconstruc-
tion is optimal in the class of mass-conservative PLIC methods.

As long as the original interface Γ(ω∗) is known to be a C2 curve with curva-
ture radius bounded from below by a positive constant R, the following estimates
hold true:

∆M1 = O(d5/R2), ∆ω = O(d3/R), ∆Γ = O(d2/R), (3)
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where d = diam(Ω). The fact of ∆Γ scaling quadratically with the diameter of
the cell d proves that MoF interface reconstruction is second order accurate.

For a non-smooth interface all errors above reach their respective pessimistic
upper bounds:

∆M1 = O(d3), ∆ω = O(d2), ∆Γ = O(d). (4)

2.3 Implementation of MoF strategy in 2D
For a number of simple shapes of Ω MoF interface reconstruction problem can
certainly be solved analytically. But our objective is to design a method that is
able to treat an arbitrary polygonal mixed cell. That is why we turn to numerical
optimization of (1).

Let x1,x2, . . . ,xn ∈ R
2 be the vertices of a mixed cell Ω enumerated in counter-

clockwise order. The area and centroid of Ω (as well as of any other polygon with
n vertices) can be calculated by formulas:

|Ω| =
1

2

n
∑

i=1

[xi×xi+1 ], (5)

xc(Ω) =
1

6 |Ω|

n
∑

i=1

[xi×xi+1 ](xi + xi+1), (6)

where [ ·×· ] is 2D vector product, and xn+1 ≡ x1.
In order to proceed with numerical optimization, one have to introduce a

suitable parametrization of the search space S
h,µ∗

Ω . Each ωh ∈ S
h,µ∗

Ω is uniquely
identified with the polar angle φ of the interface outward normal n(Γ(ωh)) (Fig-
ure 5b). We consider ωh(φ) ∈ S

h,µ∗

Ω to be a cutout of the given volume frac-
tion with the interface outward normal n(Γ(ωh(φ))) = nφ ≡ (cos φ, sin φ), and
xh(φ) ≡ xc(ωh(φ)) to be the respective centroid.

The value of the objective function

f(φ) ≡ ||xh(φ)− x∗||2 (7)

for a given φ ∈ R mod 2π, can be calculated in two steps:

1) find ωh(φ) ∈ S
h,µ∗

Ω ;

2) using (6) calculate xh(φ) as the centroid of ωh(φ) and substitute it in (7).

The first step requires a detailed explanation. Instead of finding ωh ∈ S
h,µ∗

Ω with
n(Γ(ωh)) = nφ, it is more convenient to identify ωh(φ) as a cutout of the given
volume fraction among the truncation volumes with prescribed interface normal

S
h,φ
Ω = { ωh ∈ S

h
Ω | n(Γ(ωh)) = nφ }.

13



Without loss of generality we can assume that the vertical direction is defined
by vector nφ. This convention allows us to use common terms, like height and
altitude, to specify the size and the position of an object along the direction nφ.

Each truncation volume ωh,φ ∈ S
h,φ
Ω is uniquely identified by its height ξ. The

cutout volume fraction µ(ξ) ≡ µ(ωh,φ(ξ)), ωh,φ(ξ) ∈ S
h,φ
Ω is a continuous monotone

function of ξ (Figure 6), i.e. has a well define inverse. Therefore the height ξ∗ of
ωh(φ) can be found by solving the equation

µ(ξ∗) = µ∗. (8)

The second derivative of µ(ξ) is a piecewise-constant function with discontinu-
ity points given by the vertex altitudes ξ1, ξ2, . . . , ξn. This fact along with mono-
tonicity of µ(ξ) yields an efficient solution strategy for (8), which requires only
O(n) operations for a convex Ω and O(n2) operations in general case. We call it
flood algorithm, since it models the process of flooding a vessel, represented by a
cell, with fluid.

Flood algorithm specifies three steps to identify the “level of fluid” ξ∗ in the
“vessel” Ω, at which the volume fraction below the “surface” ξ = ξ∗ matches µ∗ :

1) (pre-)sort cell vertices by their altitudes to have all discontinuity points of
µ′′(ξ) arranged in a non-descending order;

2) find the interval of quadraticity (linearity) of µ(ξ) that includes ξ∗;

3) calculate ξ∗ by means of polynomial interpolation.

Let (i1, i2, . . . , in) be an index permutation that puts vertex altitudes in a non-
descending order:

0 ≡ ξi1
6 ξi2

6 . . . 6 ξin . (9)

First one have to find the interval [ ξik∗ , ξik∗+1
] of quadraticity (linearity) of

µ(ξ) that includes ξ∗. Such an interval should satisfy condition

µik∗
6 µ∗ 6 µik∗+1

, 1 6 k∗ 6 n− 1, (10)

where µk ≡ µ(ξik) is the volume fraction of the cutout of height ξik , k = 1, n.
Since µ(ξ) is either quadratic or linear on each interval [ ξik , ξik+1

], k = 1, n− 1,
the area of Ω, enclosed between two successive levels ξik and ξik+1

, can be calcu-
lated by the trapezoid rule:

|Ω| (µk+1 − µk) =
1

2
(ξik+1

− ξik) (|Γk+1|+ |Γk|). (11)

Here |Ω| is the area of the cell, and |Γk| is the total length of the cell cross section
Γk ≡ Γ(ξik) ≡ Γ(ωh(ξik)) at level ξik , k = 1, n.

14
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Figure 6. Two different polygonal cells and the respective graphs of the volume
fraction µ(ξ) below the horizontal interface at level ξ.

Expression (11) gives a basis for recurrent calculation of all µk, k = 2, n− 1.
The search starts from the “bottom”

µ1 = 0, |Γ1| = 0,

and goes all the way “up”

µk = µk−1 +
1

2 |Ω|
(ξik − ξik−1

) (|Γk|+ |Γk−1|), k = 2, 3, . . . , (12)

until the reference volume fraction is bracketed.
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Note that each step of iterative process (12) involves identification of respec-
tive cross section Γk, k = 2, n− 1 (O(1) operations for a convex cell, O(n) other-
wise).

Once the interval of interest (10) is known, solution of (8) can be found by
means of polynomial interpolation:

• whenever |Γk∗+1| = |Γk∗ |, the function µ(ξ) is linear on [ ξik∗ , ξik∗+1
], and

ξ∗ = ξik∗ +
µ∗ − µk∗

µk∗+1 − µk∗

(ξik∗+1
− ξik∗ );

• otherwise µ(ξ) is quadratic, and

ξ∗ = ξik∗ +
|Γ∗| − |Γk∗ |

|Γk∗+1| − |Γk∗ |
(ξik∗+1

− ξik∗ ),

where

|Γ∗| =

√

|Γk∗ |2 +
µ∗ − µk∗

µk∗+1 − µk∗

(|Γk∗+1|2 − |Γk∗ |2)

is the total length of the interface Γ∗ = Γ(ωh(φ)).

Bracketing the reference volume fraction (12) is the most expensive part of the
whole algorithm (the complexity of the initial vertex altitude sort (9) is just O(n)
for a convex cell and O(n log n) in general case). One can reduce the expected
bracketing time by half by implementing the search (12) in backward order for
all µ∗ > 1/2. In this case the search starts from the “top” (µn = 0, |Γn| = 0) and
goes all the way “down” (k = n− 1, n− 2, . . .) to the interval of interest. Another
reason to implement the backward search is more accurate evaluation of ξ∗ for
µ∗ ≈ 1.

The derivative of the objective function. By calculating the alteration of the
first moment of cutout ωh(φ) due to infinitesimal increment of the interface nor-
mal, one can find a simple expression for the first derivative of xh(φ):

• whenever the interface Γ(φ) ≡ Γ(ωh(φ)) consists of a single segment (which
is always the case for a convex cell),

x′
h(φ) = −

1

12

|Γ(φ)|3

µ∗|Ω|
t(φ), (13)

where t(φ) = (−sin φ, cos φ) is a counter-clockwise unit tangent on Γ(φ).

• for a non-convex cell the interface Γ(φ) may consist of several separate seg-
ments of the cut-line (see Figure 6, non-convex cell); in this case

x′
h(φ) = −

M2(Γ(φ))

µ∗|Ω|
t(φ), (14)
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where M2(Γ(φ)) is the second central moment of the interface Γ(φ):

M2(Γ) =

∫

Γ

||x− xc(Γ)||2 dΓ, xc(Γ) =
1

|Γ|

∫

Γ

xdΓ.

Expressions (13) and (14) complete the chain rule for the first derivative of the
objective function:

f ′(φ) = 2
(

(xh(φ)− x∗) · x′
h(φ)

)

.

Here (· · ·) is a dot product.
Numerical optimization of the objective function (7) can be performed with

any univarite optimization routine available. The iterative procedure we imple-
mented is based on the recepies from [14] and [5]. It takes four input parameters:

1) the initial guess φ0,

2) the trial step increment ∆φ > 0,

3) the argument tolerance tolφ > 0,

4) the derivative tolerance tolφ > 0;

and returns the iterate φi considered to be a good approximation to the local
minimum φ∗ of the objective function f(φ), namely the first φi that satisfies either
of two conditions:

• |f ′(φi)| 6 tolf ′ or

• |φi − φ∗| 6 tolφ.

The prosedure consists of three logical parts:

1) First, the descending direction of f(φ) is identified.
If |f ′(φ0)| < tolf ′ then the search is over, and φ0 is returned.
Otherwise if f ′(φ0) > 0, the positive direction of the polar angle is altered
from the counter-clockwise to the clockwise to ensure that f(φ) is decreasing
at φ = φ0.

2) Second, the local minimum is bracketed. For this we generate a monotoni-
cally increasing arithmetic progression

φj = φ0 + ∆φ · j, j = 1, i,

until either

• a good approximation to the local minimum is found: |f ′(φi)| < tolf ′ ,
or

• the objective function growth is detected: f(φi) > f(φi−1) or f ′(φi) > 0.

17



If the former condition terminates the loop, then the search is over and φi is
returned.
The latter condition guarantees that the interval [φi−1, φi] contains a lo-
cal minimum. The minimum can be identified with arbitrary accuracy by
means of recursive cubical interpolations (see the zoom algorithm in [14]), which
progressively contract the target interval known to contain a local mini-
mum. The end points of the largest target interval are defined as

φlo ← φi−1,
φhi ← φi

if f(φi) > f(φi−1) , and
φlo ← φi,
φhi ← φi−1

otherwise.

3) The order of the end points of the interval φlo and φhi is chosen such that
φlo, among all the iterates generated so far, gives the smallest value to the
objective function:

f(φlo) 6 f(φj), j = 0, i, (15)

and also
f ′(φlo)(φhi − φlo) < 0. (16)

If |φhi − φlo| < tolφ then the search is over, and φlo is returned.
A new iterate φi+1 is defined as the unique local minimum of the cubic
polynomial interpolating the values and the first derivatives of the objective
function at the end points. As long as f(φlo) 6 f(φhi) and (16) is true, such a
local minimum exists and is located between φlo and φhi:

φi+1 = φhi − (φhi − φlo)
f ′(φhi) + d2 − d1

f(φhi)− f(φlo) + 2d2
,

where
d1 = f ′(φlo) + f ′(φhi)− 3

f(φlo)− f(φhi)

φlo − φhi

,

d2 = sign(φhi − φlo)
√

d2
1 − f ′(φlo)f ′(φhi).

If the new iterate φi+1 is too close to φlo:

(φi+1 − φlo)/(φhi − φlo) < tolφlo
,

18



there is a potential danger for the iterations to fall into the stagnation loop;
to avoid this, the iterate φi+1 should be moved away from φlo al least as far
as tolφlo

|φhi−φlo|. We find that the value of tolφlo
= 0.05 serves the purpose

quite well.
If |f ′(φi+1)| 6 tolf ′ then the search is over, and φi+1 is returned.
The new iterate φi+1 partitions the target interval in two subintervals. Which
one we should pick to contunue the recursion?
If f(φlo) < f(φi+1) then φi+1 should replace φhi :

φhi ← φi+1;

else if f ′(φi+1)(φhi − φlo) < 0 then φi+1 should replace φlo :

φlo ← φi+1;

otherwise we put
φhi ← φlo,
φlo ← φi+1.

These rules guarantee that the new target interval satisfies both (15) and
(16). Update the iterate counter i← i + 1 and repeat the 3rd step.

In our numerical experiments we used ∆φ = π/(2n) and tolφ = 10-6. We deliber-
ately set tolf ′ = 0 ensure that all second order accurate reconstruction algorithms
participating in the numerical experiments (see the next section on static tests)
terminate under the same condition, i.e. whenever the polar angle of the inter-
face normal stabilizes within tolφ.

One should be careful choosing the initial guess for the optimization proce-
dure: even if the objective function (7) has a unique global minimum, it may still
possess some other local minima (see Figure 7, µ∗ = 0.02), which can distract the
algorithm.

A safe initial guess φ0 is provided by the polar angle of vector xc(Ω)− x∗. If
Ω were a circle, this choice of φ0 would give us the exact minimizer of (7). Even
though this is not the case, the more isotropic the shape of the mixed cell is, the
better the initial guess above approximates the objective function minimum.

We also claim that suggested φ0 either specifies the point on the slope of
a global minimum valley or marks the top of the hill that divides two global
minima. Therefore the conservative value of ∆φ guarantees to bring the search
started at suggested φ0 to a global minimum.
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Figure 7. (a) The unit square cell Ω with a sample reference centroid x∗ and sam-
ple centroid loci {X h,µ∗

Ω } of the cutouts of various volume fractions
(µ∗= 0.5, 0.25, 0.125, 0.02).
(b) The respective objective function graphs. Each objective function
has a unique global minimum; the one corresponding to µ∗ = 0.02 has
three more local minima.

3 Static tests
The idea of static test for an interface reconstruction algorithm is pretty simple;
given a particular shape of the reference component and a computational grid,
one should:

1) calculate the moments of the reference component enclosed in each cell,

2) reconstruct the mixed cell interfaces based on the data obtained, and then

3) compare the resulting shape to the original one.

To calculate the moments of the reference component enclosed in a cell, one has
to find the intersection of the cell with the original shape. If both the cell and
the original shape are represented by convex polygons, it is possible to find the
intersection in linear time [17, 16]2); non-convex polygons for this purpose can
always be decomposed into a set of convex polygonal parts.

2) We used “chasing” algorithm [17] routine implemented by M. Staley in COnservative REmap-
per (CORE) library [24].
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Along with MoF method we tested three VoF-PLIC methods for general polyg-
onal grids:

• Least Square Gradient (LSG) with reciprocal quadratic distance weights[2],
which we refer to as LSGQ,

• LVIRA [20, 19],

• Swartz algorithm [28, 12].

The choice of the last two methods is pretty obvious: these are the only orig-
inal second order accurate VoF-PLIC methods suitable for unstructured grids.
Both LVIRA and Swartz algorithms are iterative and rely on a reasonable initial
guess, usually provided by a direct VoF-PLIC method (LSGQ in our case). More
details on implementation of these VoF-PLIC algorithms can be found in Ap-
pendix.

The first order accurate algorithms are represented by LSG; it requires only
a list of neighbors for each mixed cell. Frankly, the only real alternative to LSG
is Green-Gauss algorithm [2], but the latter requires adjacent cells to be properly
ordered. On a uniform rectangular grid both LSGQ and Green-Gauss give the
same normal estimate as the Youngs algorithm [31].

The results produced by these PLIC algorithms for six different shapes are
presented on Figures 8 and 9. Although original shapes are not shown, their
names are self-explanatory. As one can see, MoF method has higher resolution
than VoF alternatives, adds no blurring, and takes the maximum out of PLIC
approximation: polygonal shapes “zigzags” and “compass rose”, which are spe-
cially designed to have a piecewise-linear boundary that can be captured on the
16 × 16 grid with a single linear segment per cell, are reproduced by MoF algo-
rithm exactly.

Error quantification. Our next step is quantification of the interface recon-
struction error. With focus of discussion shifting from a single mixed cell to the
entire computational grid, it is necessarily to change the notation. Let Ω ⊂ R

2

now represent a polygonal domain quasi-uniformly partitioned into N polygonal
cells {Ωi}

N
i=1 :

Ω =

N
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ ∀ i 6= j;

open ω∗ ⊂ Ω and ω∗
h ⊂ Ω represent the original and the reconstructed shapes

of the reference component. The intersections of ω∗ and ω∗
h with a single cell

Ωi, i = 1, N will be referred to as ω∗
i and ω∗

h,i respectively.
Several ways to quantify the interface reconstruction error were mentioned

in Subsection 2.1. Since we already had in our possession a polygon intersec-
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Figure 8. Results of the interface reconstruction with various PLIC techniques.
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Figure 9. More interface reconstruction results.
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tion routine3), we decided to measure the area of the symmetric difference between
ω∗ and ω∗

h:

∆ω = |ω∗4ω∗
h| =

N
∑

i=1

|ω∗
h,i4ω∗

i |.

The interface reconstruction algorithms we examine are volume-conservative, i.e.
|ω∗

h,i| = |ω
∗
i |, i = 1, N, therefore

|ω∗
h,i4ω∗

i | =

{

2
(

|ω∗
i | − |ω

∗
i ∩ ω∗

h,i|
)

, if Ωi is a mixed cell,

0, otherwise,

which yields the following practical expression for ∆ω :

∆ω = 2
M
∑

i=1

(

|ω∗
i | − |ω

∗
i ∩ ω∗

h,i|
)

; (17)

here M is the total number of mixed cells, without loss of generality we can as-
sume that all mixed cells are enumerated from 1 to M .

This area, divided by the length of the original interface |∂ω∗|, gives the aver-
age distance between the reconstructed and original interfaces. To make this quantity
scale-independent, we normalize it by a characteristic size L̃ of the original shape
ω∗; the result is referred to as a normalized average deviation:

ε̃avg =
1

L̃

|ω∗4ω∗
h|

|∂ω∗|
.

Another important error characteristics we can get with {|ω∗
i ∩ ω∗

h,i|}
M
i=1 is the

maximum of the normalized average deviation per (mixed) cell:

ε̃max = max
i=1,M

1

L̃

|ω∗
i4ω∗

h,i|

|Γ(ω∗
h,i)|

,

which indicates the worst local error attainable.
Direct error mesurements. To figure out how these errors scale with mesh

refinement we conducted a series of direct error measurements on a sequence of
uniform rectangular grids (Ω =]0, 1[×]0, 1[) with mesh spacing h varying from
1/2 to 1/210 (hk = 1/2k, k = 1, 10).

Each PLIC algorithm was tested against two shapes:

1) circle of radius L̃ = 0.25 centered at (0.5 + 1/17, 0.5 + 1/41);

3) Due to COnservative REmapper (CORE) library [24] by M. Staley.
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Figure 10. Interface reconstruction error.

2) 2L̃×2L̃ = 0.5×0.5 square centered at (0.5 + 1/17, 0.5 + 1/41) and rotated
counter-clockwise by π/16 radians;

Both shapes have the same characteristic scale L̃ = 0.25, their location and ori-
entation were chosen to eliminate the influence of the symmetry factor on error
readings.

The results of these tests are presented on the graphs (Figure 10), where error
is related to the normalized mesh spacing h̃ = h/L̃. Both horizontal and vertical
axes are logarithmic.

Let us first comment the circle test results. As one might have anticipated,
LVIRA, Swartz and MoF algorithms provide second order accurate approxima-
tion to the C2-smooth interface, while LSGQ is only first order accurate. Uniform
curvature of the interface explains similar behavior of both average and maxi-
mum errors, although average error is somewhat lower and less volatile due to
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the aggregate nature of this indicator. MoF algorithm results in the lowest error.
Average errors of LVIRA and Swartz algorithms are 50+% and 18+% higher than
respective MoF error. Even though LSGQ is asymptotically less accurate than
LVIRA and Swartz, the former algorithm exhibits significantly smaller error (just
6% above MoF) on coarse and medium scales and starts to loose the advantage
over LVIRA and Swartz only after the cell size drops below 1/8 of the interface
curvature radius.

In the second test the original interface is not smooth, and that is why all
four methods demonstrate maximum local error of order O(h). Asymptotic av-
erage error of LSGQ is also O(h), while for all other three methods this indicator
is only O(h2). This behavior has a clear explanation: all second order accurate
methods are able to capture straight segments of the interface exactly, and only
in the mixed cells surrounding sharp corners of the original polygonal shape the
error is not zero. With O(1) mixed cells contributing to the average error, global
∆ω is only O(h2) (see (4)), which results in ε̃avg = ∆ω/(8L̃2) = O(h2) average
deviation. Once again MoF algorithm demonstrates the highest accuracy. Since
there is only one mixed cell per vertex of polygonal interface that contributes to
MoF average error against three to four for competitors, MoF average error is at
least two times lower than the respective average error of any other method. We
would also like to emphasize the superiority of MoF algorithm over the VoF-PLIC
methods on a very coarse scale.

CPU time mesurments. In terms of CPU time the clear winner is LSGQ,
which is about five times faster than MoF and Swartz methods and seven times
faster than LVIRA. Common software components shared between the imple-
mentations of different methods allow us to claim a non-discriminative character
of these results.

4 Advection scheme example
In order to employ MoF interface reconstruction algorithm in a fluid flow simula-
tion, we have to equip it with appropriate advection scheme. Below we present
an example of the transport algorithms that can be used to update the volume
and centroid data in incompressible fluid flow simulations. The scheme can be
characterized as a Lagrangian remap.

The solenoidal velocity field v(x, t) is assumed to be given analytically, there-
fore no explicit constraint on the Courant number CFL = v ∆t/h is imposed
(here ∆t is the time step, h is the local mesh spacing, and v is the local flow
speed).
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4.1 Volume transport
Given the location of mixed cell interfaces at tk−1 = ∆t (k − 1), one can evaluate
the content of cells at tk = tk−1 + ∆t as follows:

for each cell Ωi, i = 1, N do
track Ωi back in time to t = tk−1 to identify the Lagrangian prototype Ωi,k−1

of the cell;
find the volume m̃i,k−1 of the reference phase enclosed in Lagrangian

prototype Ωi,k−1;
put the volume mi,k of the reference component in Ωi equal to m̃i,k−1.

end do

The vertices of polygonal cell Ωi are tracked back along the streamlines by
means of the 4-th order Runge-Kutta scheme and then connected in proper order
by the straight segments. This results in a polygon that we consider to be a discrete
Lagrangian prototype Ωi,k−1 of cell Ωi (see Figure 11).

Using a polygon intersection routine 4), we find the intersections of Ωi,k−1

with all cell fractions at t = tk−1 covered by the prototype. One can significantly
accelerate the search of such cell fractions by partitioning the bounding box of the
entire computational domain into 2D array of rectangular bins and presorting all
the mesh cells among these bins based on the centroid location. If CFL 6 1, it is
sufficient to intersect the prototype only with the cell fractions of Ωi and its direct
neighbors. Moreover, if CFL 6 1 and Ωi along with all its neighbors is empty at
t = tk−1, then it is guaranteed to stay empty the next discrete moment of time,
and there is no need to perform any polygon intersections in this case at all.

In a linear velocity field, which is known to preserve straight lines, the true
Lagrangian prototype of a polygonal cell is always a polygon, and the accuracy of
the remapping is limited only by the accuracy the integration scheme. For a p-th
order accurate scheme the area defect |Ωi,k−1| − |Ωi| is estimated as O(h∆tp+1).

In a nonlinear velocity field straight lines are not preserved, and the Lagrangian
prototype of a polygonal cell is not exactly a polygon. Therefore by ignoring the
curvature of the prototype edges we introduce additional O(h3∆t) area defect.

Even a small area defect can eventually cause the algorithm to halt. Indeed,
if the volume of the reference component m̃i,k−1 enclosed in the prototype Ωi,k−1

exceeds the capacity of the cell |Ωi|, we are in trouble. Another, less critical, sit-
uation occurs when the prototype, being filled with the reference component,
happens to have the area |Ωi,k−1| smaller than |Ωi|. In this case the cell becomes
mixed, even though its prototype contains only one component.

4) Due to COnservative REmapper (CORE) library [24] by M.Staley.
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Figure 11. The discrete (a) and true (b) Lagrangian prototypes of the cell.

In order to fix these flaws we use a post-remapping repair procedure. For
every cell Ωi, i = 1, N we specify the lower mi,k and the upper mi,k bounds of
the reference fraction volume mi,k allowed:

mi,k = mi,k = 0 if the prototype is empty,

mi,k = mi,k = |Ωi| if the prototype is full,
mi,k = 0, mi,k = |Ωi| otherwise,

(18)

and then force each volume mi,k, i = 1, N to fit into these bounds:

for each cell Ωi, i = 1, N do
if Ωi is overfilled (mi,k < mi,k) then

try to redistribute the excess between the non-overfilled neighbours
while there is still some excess remained do

redistribute them among the next layer of the surrounding cells
end do

else if Ωi is underfilled (mi,k < mi,k) then
try to compensate the shortfall by borrowing from the non-underfilled

neighbours
while there is still some shortage of material do

borrow it from the next layer of the surrounding cells
end do

end if
end do

28

http://math.lanl.gov/~vdyadechko/doc/2005-mof.pdf
http://math.lanl.gov/~vdyadechko/doc/2005-mof.pdf


Due to the local nature of the area defect, the redistribution usually involves
only direct neighbours of the cell. Therefore the complexity of the whole repair
step comes to the total of O(N).

4.2 Centroid transport
The technique above is easily extensible for advancing centroid positions in time.
Whenever a non-empty intersection of discrete Lagrangian prototype Ωi,k−1 with
any cell fraction is detected, one has to calculate not only the area but also the first
moment of the intersection. After all the intersections are found, the centroid of
the reference fraction of Ωi,k−1 is calculated as the moment to volume ratio and
is tracked forth along the streamlines to determine the position of the reference
centroid in cell Ωi. There is no need to track the centroid if the prototype contains
only one component: with (18) bounds the repair step guarantees that the cell
will stay pure as well.

Whenever the velocity field is linear in space, the actual centroid velocity of
any volume of fluid coincides with the field velocity at the centroid location:

d

dt
xc(ω) = v(xc(ω)). (19)

Therefore, in this case, the trajectory of real centroid follows a streamline and the
reference centroid error is due only to approximate integration (O(∆tp+1) for a
p-th order scheme).

For a nonlinear velocity field the identity (19) is void. As long as v(x, t)
is twice differentiable in x, the following estimate, given by Taylor expansion,
holds:

d

dt
xc(ω) = v(xc(ω)) + O(d2). (20)

Here d = diam(ω) is the diameter of the volume advected. The cumulative refer-
ence centroid error in this case is O(d2∆t).

Since the reference centroid error is determined by the diameter of the ad-
vected volume, some accuracy improvement can be gained by advecting the fluid
in smaller pieces. The reference fraction of Lagrangian prototype is originally as-
sembled from elementary intersections of Ωi,k−1 with the reference fractions of
cells on the previous time step. Therefore, instead of advecting the aggregated
centroid, one may choose to advect centroids of these elementary parts separately
and only then proceed with their aggregation (Figure 12a).

Also, whenever the volume of the complementary phase in the prototype is
smaller than the volume of the reference component (|Ωi,k−1\ωi,k−1| / |ωi,k−1|),
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Figure 12. Two ways to improve the reference centroid accuracy: (a) by advect-
ing the reference fraction in pieces, (b) by advecting a smaller comple-
mentary fraction.

one should advect the complementary centroid instead and then use the identity

xc(ωi) |ωi|+ xc(Ωi\ωi) |Ωi\ωi| = xc(Ωi) |Ωi|

to get the position of the reference centroid (Figure 12b).

4.3 Numerical examples
Example 1: Solid Rotation of Letter A. The first set of snapshots (Figure 13) is
due to advection of “A” glyph in the solid rotation field:

v((x, y), t) =

[

−(y − y0)
+(x− x0)

]

, (x0, y0) = (0.5, 0.5).

Other parameters of the numerical experiment:

computational domain ]0, 1[×]0, 1[,

simulation time T = 2π,

computational grid 1024 polygonal cells,

number of time steps NT = 144.
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The velocity field is linear so that the error introduced by interface reconstruc-
tion prevails over the advection error. All VoF-PLIC methods oversmooth the in-
terface, while MoF method demonstrates a good ability to preserve the shape of
the glyph.
Example 2: Reversible vortex. The second test case [22] simulates the evolution
of the round “blot”

{ x ∈ R
2 | ||x− x0|| 6 R }, x0 = (0.5, 0.75), R = 0.15

in the vortex field:

v((x, y), t) =

[

+sin 2(πx) sin (2πy)
−sin 2(πy) sin (2πx)

]

cos (πt/T ).

The cosine multiplier gradually “decreases the power” of the vortex until the
complete stop (v(x, t) ≡ 0) at t = T/2, and then starts to “power up” the reversed
vortex. Since

v(x, t) = −v(x, T − t), 0 < t < T,

the exact integration of the fluid motion from t = 0 to t = T should result in
zero changes. Therefore by comparing the final configuration against the initial
setup, one can get the idea of accuracy of numerical method employed. For easier
judgment we overlayed the snapshots (Figure 14) with the interface line obtained
with tracking technique [1].

Other parameters of the experiment:

computational domain ]0, 1[×]0, 1[,

simulation time T = 8,

computational grid uniform, 32× 32 cells,

number of time steps NT = 256.

Although the final shape obtained with MoF method demonstrates better
overlap with the initial shape than the VoF-PLIC alternatives, the latter result in
much smoother interface. The reason for this is that VoF methods, due to the ag-
gregate nature of the interface normal estimate, have a tendency to oversmooth
the interface, which on the dynamic level can be interpreted as an artificial nu-
merical surface tension. This feature becomes determinative when a VoF method
is forced to work on the edge of the resolution limit: by the moment of maximum
stretch (t = T/2) the shape of the reference component becomes so thin that it
breaks into a series of separate blobs. MoF method does not exhibit this kind of
behavior and gives much better approximation of real interface at t = T/2.
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Figure 13. Solid rotation test results.
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Figure 14. Reversible vortex test results.
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Appendix

A Implementation details of the VoF-PLIC algorithms

In order to evaluate the interface normal, all VoF-PLIC algorithms require the list
of cells adjacent to a given mixed cell. We consider two cells to be adjacent if they
share either an edge or a vertex.

LSGQ and LVIRA. Implementations of LSGQ and LVIRA follow exactly the
descriptions given in [2] and [19] respectively.

The initial guess for LVIRA is given by LSGQ output. The minimum of LVIRA
objective function is considered to be localized when the polar angle of the inter-
face outward normal iterate stabilizes within tolφ = 10 -6 radians.

Swartz algorithm. We believe that Swartz algorithm is somewhat under-
represented in literature and therefore would like to discuss it in more detail.

The idea of the method is based on the fact that for a pair of adjacent mixed
cells there exists a common linear interface that satisfies arbitrary given volume
fractions. In the context of structured rectangular grid the common linear inter-
face can be found analytically [6, 10]. For general polygonal grids B. Swartz has
introduced an iterative procedure [28] that converges quadratically to a common
linear interface:

Given an initial VoF-PLIC interface approximation in both mixed cells,

1) connect the medians of interfaces with a straight segment;

2) use the normal of this segment as a new iterate for the normal of common
linear interface;

3) build a new linear interface in each cell using this normal;

4) repeat these three steps until the direction of the common interface normal
establishes within some small tolerance (we used tolφ = 10 -6).

Our implementation defines the direction of the interface normal in each mixed
cell as an arithmetic average of common interface normals due to all possible
mixed neighbours. This strategy is somewhat different from the scheme de-
scribed by S. Mosso and B. Swartz in [12] and is actually the reason why the
algorithm we implemented is called Swartz, not Mosso-Swartz.

In addition to the procedure above, further referred to as internal iterations,
Mosso-Swartz algorithm specifies an external iterative process that loops through
the list of mixed cell, updating the interfaces one in a time in Gauss-Seidel manner,
i.e. as soon as a new interface is evaluated. By means of numerical experiment
we figured out that such external iterations result in excessive numerical surface
tension, oversmooth the interface and decrease the resolution of the algorithm.
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Therefore we do not use external iterations at all and update the interfaces just
one time, in Jacobi manner, i.e. only after all the new interfaces have been evalu-
ated from the original initial guess.

Whoever wants to implement the internal iterations should know that a com-
mon linear interface satisfying given volume fractions is not unique. The iterative pro-
cess, depending on initial guess and details of implementation, may converge
to either of them. As it has been mentioned before, the initial guess for internal
iterations in our implementation is provided by LSGQ algorithm.

One should also understand that the segment connecting the medians of the
adjacent interfaces allows two choices of the outward normal. Between the two op-
posite normals we choose the one that has a positive projection on the previous
normal iterate.

We do not perform the internal iterations for a pair of adjacent mixed cells
at all, unless the initial outward normals differ by less than 45 degrees. The
rationale of this discrimination strategy comes clear if we start to look at Swartz
iterations as at the second order accurate “upgrade” of initial interface approxi-
mation: if two initial normals already differ significantly, then the common lin-
ear interface is highly unlikely to give an adequate approximation to the original
one, and therefore should not contribute to the average. This way the “upgrade”
kicks in only for those pairs of adjacent cells that carry information about the
same smooth segment of the original interface.
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